
Client-side Content Folding

Opera Software ASA
Last revision July 21, 2009

1 Introduction

Opera Mini includes an extension for folding and unfolding content on the client-side. The main
advantage of this feature is the ability to change the displayed content without the need of a server
roundtrip which thus enhances the user experience.

The folding and unfolding can be triggered using the mini:onClick event or the href attribute,
both restricted to anchor tags. It is possible to fold and unfold any content that can be put in
a block level container like <div> - including links, images and nested folds. A block is marked
as a fold segment if it has a -o-mini-fold property set in CSS. If a block is marked as folded or
unfolded it is a fold segment. If it is marked as folded it is hidden in its initial state.

2 Syntax

The CSS property is called -o-mini-fold and accepts one of the following two values: folded and
unfolded. It sets the initial state and is used to identify foldable elements. Property definition as
per CSS1 (REC-CSS-20080411) syntax:

Name: -o-mini-fold
Value: none | folded | unfolded
Initial : none
Applies to: block-level elements
Inherited : no
Percentage values: N/A

The HTML id attribute for the block that defines the fold will be used to identify the fold.
Thus the fold information is the y-coordinates for fold top and bottom (start and stop), initial fold
state (hidden or shown) and its id. Folds are not allowed to overlap or have the same id, and the
behaviour if that occurs is not defined.

To control the fold state a new URL protocol “fold” is introduced, which will list what fold
elements on the page should change state and how. The elements can either be explicit id tokens,
or global expressions matching several of the id tokens. As a special case an asterix can be used to
indicate that all folds should be folded or unfolded. The URL will contain two sections, separated
by a semicolon, the first being blocks to be folded and the second blocks to become unfolded.

Definition of fold protocol using ABNF (RFC 2234) where the the Name, NameChar and Letter
products are from the XML specification (REC-xml-20060816):

FOLD_PROTOCOL = "fold:" HIDE ";" SHOW
HIDE = ID_LIST
SHOW = ID_LIST
ID_LIST = ELEMENT *("," ELEMENT)
ELEMENT = Name / 1*("*" / "?" / Letter / "_" / ":") *("*" / "?" / NameChar)

For the basic use of folds, to create the same effect as with folding link areas, a fold URL is
used as the target for a normal HTML anchor tag (as an alternative to href, the mini:onClick
attribute can be used, but is also restricted to anchor tags). The links are encoded as FOCUSDATA
with CONTENTFOLDINGTARGET as TARGET.

The content (un)folding is applied to all matching ids that either have -o-mini-fold in their
style attribute or in one of their CSS classes.

1

3 Examples

All of the following examples are stripped of their <html> and <body> tags as well as of their
complete <head>. They assume the following CSS code (either in their <head> or in a linked file):
.folded { -o-mini-fold: folded; }
.unfolded { -o-mini-fold: unfolded; }

3.1 Basic Usage

This example demonstrates the folding mechanism by folding and unfolding a single line of text.
<p>

The text "content"is foldable using the following links:

<a mini:onClick="fold:sample;">Fold

<a mini:onClick="fold:;sample">Unfold

</p>

<div id="sample" class="unfolded">content</div>

Note that when removing class="unfolded", the example wouldn’t work.

Figure 1: Unfolded text Figure 2: Folded text

3.2 Wildcards

This example illustrates the possibility of folding and unfolding more than one item at a time. In
this case, the folded elements constitute some text and an image.
<p>

Clicking the following link folds/ unfolds all foldables on the page.

<a mini:onClick="fold:*;">Fold

<a mini:onClick="fold:;*">Unfold

</p>

<div id="text" class="unfolded" style="border:1px solid black;">some text</div>

<div id="image" class="unfolded"></div>

2

Figure 3: Unfolded content Figure 4: Folded content

3.3 Nested Folds

This example demonstrates the possibility of having a folding area inside another folding folding
area.
<p>

<a mini:onClick="fold:container;">Fold|
<a mini:onClick="fold:;container">Unfoldcontainer

</p>

<div id="container" class="unfolded" style="border:1px solid; padding:0.5em;">

<a mini:onClick="fold:img;">Fold|
<a mini:onClick="fold:;img">Unfoldimage

<a mini:onClick="fold:text;">Fold|
<a mini:onClick="fold:;text">Unfoldtext

<p id="text" class="unfolded" >Opera Software</p>

</div>

Figure 5: Everything is unfolded Figure 6: Nested image is folded

3.4 Folding multiple elements at a time

This final example shows that it is possible to (un)fold any number of elements on a single click.
<p>

<a mini:onClick="fold:*;">Fold|

3

<a mini:onClick="fold:;*">Unfold all

<a mini:onClick="fold:i*;">Fold|
<a mini:onClick="fold:;i*">Unfold Items 1-3

<a mini:onClick="fold:i2,j;">Fold|
<a mini:onClick="fold:;i2,j">Unfold Items 2, j

</p>

<div id="i1" class="unfolded">Item 1</div>

<div id="i2" class="unfolded">Item 2</div>

<div id="i3" class="unfolded">Item 3</div>

<div id="j" class="unfolded">Item j</div>

Figure 7: Everything is un-
folded

Figure 8: Items 1-3 are folded Figure 9: Items 2 and j are
folded (after unfolding all)

3.5 Programmatically Set mini:onclick

It is also possible to programmatically add and remove the trigger for content folding using
JavaScript. The following example has the same result as example 3.1 on page 2.
<script type="text/javascript">

window.addEventListener("load", init, false);

function init () {
l1 = document.getElementById("l1");

l2 = document.getElementById("l2");

l1.setAttribute("mini:onClick","fold:sample;");

l2.setAttribute("mini:onClick","fold:;sample");

}
</script>
<p>

The text "content"is foldable using the following links:

Fold

Unfold

</p>

<div id="sample" class="unfolded">content</div>

4

4 Example Application - Carousel

One of the many possible applications of this extension is a simple carousel-like menu. The menubar
on top of the page can be used to open the connected entries and like when switching open tabs,
no page load is required. The arrows allow to change the visible options and overflow at the end,
effectively creating a carousel. See appendix A on page 6 for a listing of the PHP code that makes
up this example.

Figure 10: A “carousel” menu Figure 11: Another tab is visible

The trick is to simply create the menu once for each possible state and then fold all but one of
those menus. The same applies for the content.

5 Limitations

Due to the complexity in implementing a client/server folding mechanism, certain basic limitations
for the markup apply. Generally, problems can be avoided by not using the CSS property “overflow”
inside of foldable containers and by using “padding” instead of “margin”.

5

A PHP Code of the Sample Application

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN""http://www.w3.

org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"xml:lang="en">

<head>

<meta content="application/xhtml+xml"/>

<title>Example Application</title>

<link rel="stylesheet"type="text/css"href="sample-app.css"/>

</head>

<body>

<?php

// to extend this example, just add your entries to the array
// and create a name.php file as well as an im/name.png icon
$entries = array("news","translate","bookmarks","im","pictures","calendar",
"settings");

$last = sizeof($entries) - 1;

$line = "\n";
foreach ($entries as $i => $name) {
$state = "folded";

$go right = $i + 1;

$go left = $i - 1;

// dealing with menu overflows
if ($i == 0) {
$state = "unfolded";

$go left = $last;

}
if ($i <= $last-2) {
$left = $name;

$middle = $entries[$i+1];

$right = $entries[$i+2];

} elseif ($i == $last - 1) {
$left = $name;

$middle = $entries[$last];

$right = $entries[0];

} elseif ($i == $last) {
$left = $name;

$middle = $entries[0];

$right = $entries[1];

$go right = 0;

}
// a tad hard to read, sorry
echo ’<div id="menu’.$i.’" class="’.$state.’ menu">’.$line;

6

echo ’ <a mini:onClick="fold:menu*;menu’.$go left.’">’.$line;

echo ’ ’.$line;

echo ’ <a mini:onClick="fold:c*;c ’.$left.’">’.$line;

echo ’ ’.$line;

echo ’ <a mini:onClick="fold:c*;c ’.$middle.’">’.$line;

echo ’ ’.$line;

echo ’ <a mini:onClick="fold:c*;c ’.$right.’">’.$line;

echo ’ ’.$line;

echo ’ <a mini:onClick="fold:menu*;menu’.$go right.’">’.$line;

echo ’ ’.$line;

echo ’</div>’.$line.$line;

}

foreach ($entries as $i => $name) {
$state = "folded";

if ($i == 0) {
$state = "unfolded";

}
echo ’<div id="c ’.$name.’" class="’.$state.’ content">’.$line;

$fileName = $name.".php";

$error = "The widget you chose is currently not available.";

if (file exists($fileName)) {
include($fileName);

} else {
echo $error;

}
echo ’</div>’.$line.$line;

}
?>

</body>

</html>

7

	Introduction
	Syntax
	Examples
	Basic Usage
	Wildcards
	Nested Folds
	Folding multiple elements at a time
	Programmatically Set mini:onclick

	Example Application - Carousel
	Limitations
	PHP Code of the Sample Application

