Yorick Koster, February 2017

SyntaxHighlight MediaWiki extension allows injection of
arbitrary Pygments options

Abstract

A vulnerability was found in the SyntaxHighlight MediaWiki extension. Using this vulnerability it is possible for an
anonymous attacker to pass arbitrary options to the Pygments library. By specifying specially crafted options, it is possible
for an attacker to trigger a (stored) Cross-Site Scripting condition. In addition, it allows the creating of arbitrary files
containing user-controllable data. Depending on the server configuration, this can be used by an anonymous attacker to
execute arbitrary PHP code.

Tested versions

This issue was tested on SyntaxHighlight version 2.0 as bundled with MediaWiki version 1.28.0.
Fix

There is currently no fix available.

Introduction

The SyntaxHighlight extension for MediaWiki allows formatting of source code using the <syntaxhighlight> tag. Version
2.0 uses the Python Pygments library to format the code. SyntaxHighlight is bundled with MediaWiki version 1.21 and
later. Version 2.0 is bundled with MediaWiki 1.26.0 and later (other versions may or may not include this version as well).

The <syntaxhighlight> tag supports various parameters. It was found that the start parameter is not validated and/or
sanitized. This allows an attacker to pass arbitrary options to the Lexer and/or Formatter that is used when Pygments is
invoked. By specifying specially crafted options, it is possible for an attacker to trigger a (stored) Cross-Site Scripting
condition. In addition, the HTML formatter allows the creating of arbitrary files containing user-controllable data.
Depending on the server configuration, this can be used by an attacker to execute arbitrary PHP code.

Details

The SyntaxHighlight extension utilizes Pygments to format source code. Pygments is a Python library, a copy is provided
with the extension. In order to use Pygments, the extension invokes it using Symfony's ProcessBuilder component. This
component performs escaping of command line arguments to prevent command injection.

SyntaxHighlight GeSHi.class.php:

$optionPairs = array();
foreach ($options as $k => $v) {
$optionPairs[] = "{$k}={$Vv}";
}
$builder = new ProcessBuilder();
$builder->setPrefix($wgPygmentizePath);
$process = $builder
->add("-1")->add($lexer)
->add("-f")->add("html")

syntaxhighlight_mediawiki_extension_allows_injection_of_arbitrary_pygments_options.htmlI[2/21/2017 7:49:26 PM]

https://www.mediawiki.org/wiki/Extension:SyntaxHighlight
https://www.mediawiki.org/
http://pygments.org/
https://symfony.com/
http://api.symfony.com/3.2/Symfony/Component/Process/ProcessBuilder.html

->add("-0")->add(implode(",", $optionPairs))
->getProcess();

$process->setlnput($code);
$process->run();

The used Lexer is specified through the lang parameter, the Formatter is always set to the HtmlFormatter. Additional
options for the Lexer and/or Formatter are provided using the -O command line argument. These options can be controlled
by the parameters that are supported by the <syntaxhighlight> tag. Each option is a key value pair, the options are comma
separated.

It was found that no input validation and/or sanitization is done on the start parameter. This parameter is used to define the
first line number of a code block. If line numbers are enabled, the numbering will start with the value provided in the start
parameter. Normally, this value should only contain numbers. Due to the lack of validation/sanitization, it can be set to
any value.

SyntaxHighlight GeSHi.class.php:

// Starting line number
if (isset($args["start™])) {
$options["linenostart™] = $args[“start"];

}

Since Lexer/Formatter options are comma separated, it is possible for an attacker to provide arbitrary options when
invoking Pygments. Depending on the options supported by the Lexer or Formatter, this allows the attacker to perform
various types of attacks. For example it is possible for an attacker to trigger a (stored) Cross-Site Scripting condition by
passing a specially crafted prestyles option to the HTML Formatter.

<syntaxhighlight lang="java"

start="0,prestyles="8><script>alert(document.cookie)</scripté> ">
string foo="bar";

</syntaxhighlight>

syntaxhighlight_mediawiki_extension_allows_injection_of_arbitrary_pygments_options.htmlI[2/21/2017 7:49:26 PM]

e8e < > HI # enwikipedia.org X i (]

edittoolscharsubset=0; VEE=wikitext;
enwikiGeoFeaturesUser2=a3acef646ee68e5c; CP=H2;
enwikimwuser-sessionld=7f02c662863930f6f;
bannercount_fundraiser_2016=3;
bannercount_fundraiser_2016-
wait=2%7C1463053298973%7C0;
centralnotice_bannercount_fris=1;
centralnotice_bannercount_fr15-

wait=5%7C1466171291408%7C1; GeolP=PT::
38.71:-9.14:v4

Figure 1: Cross-Site Scripting through prestyles option

When the option full is passed to the HTML Formatter, it is possible to specify a local CSS file using the cssfile option. If
the CSS file does not exist it will be created - provided that Pygments has write privileges on the provided path. This CSS
file contains the styles that are used for formatting the source code. Providing additional options, it is possible to control
parts of the CSS. One such option is the classprefix option.

Combining these options can result in execution of arbitrary PHP code, provided that a writeable folder exists within the
webserver's document root that allows the execution of PHP files. The proof of concept below will try to create a PHP file
name foo.php in the images folder located within the document root.

<syntaxhighlight lang="java" start="0,full=1,title=,cssfile=images/foo.php,classprefix=<?php
phpinfo();exit; ?>">
</syntaxhighlight>

Unless the Wiki is configured as private, it is possible to exploit this issue without logging into the Wiki. If the Wiki is set
to private, an account with read access is required to exploit this vulnerability.

syntaxhighlight_mediawiki_extension_allows_injection_of_arbitrary_pygments_options.htmlI[2/21/2017 7:49:26 PM]

	Local Disk
	syntaxhighlight_mediawiki_extension_allows_injection_of_arbitrary_pygments_options.html

