
 

 

GSoC 
2020 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ㅡ 

Personal 
Information 

 

 

Google Summer of Code 2020 

Wikimedia 

 

 
 

Commons-App Android  
 
 

 
 
Name:            Kshitij Bhardwaj 
Github:          kbhardwaj123 
Email:             kshitij256kencryption@gmail.com 
Phone No:   +91-9634843951 

Location:      India    
Time Zone:  India (UTC +5:30) 
Slack:               Kshitij Bhardwaj 
LinkedIn:       Kshitj Bhardwaj 
 

ㅡ 

University 
Information 

 

 
 
University:   Indian Institute of Technology, Roorkee 
Majors:           Electronics and Communication Engineering  
Current:         IInd Year (batch 2022) 
Degree:          Bachelor of Technology (4 Year Program) 
 
 
 

 

https://github.com/kbhardwaj123
mailto:kshitij256kencryption@gmail.com
https://www.linkedin.com/in/kshitij-bhardwaj-8508a5191/
https://www.iitr.ac.in/


 

ㅡ 

Contact and 
Working 
hours 

 
 

ㅡ 

Coding Skills 

 
 
 

ㅡ 

Experience 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Reachable anytime through email, slack or contact number 
 

Typical working hours :- 

● UTC 0430 - 0730 hrs (IST 1000 - 1300 hrs) 
● UTC 0930 - 1230 hrs (IST 1500 - 1800 hrs) 
● UTC 1530 - 2030 hrs (IST 2100 - 0200 hrs) 

 
 

 

Programming Languages:  
● Proficient PHP, Python, Dart, Java 
● Intermediate Knowledge in C++, Android, Javascript 
● Worked with Django, React, Flutter, Angular, Yii 2.0, Figma 
● Databases - MySQL, PostgreSQL, SQlite3 

   
 

 
Full Stack web and native app Developer, currently Hub-Coordinator at 
Information Management Group (IMG), IIT Roorkee. During my first year at 
college my workspace was confined to web development, during which I 
worked on a few applications, for instance IMGSched (application for 
scheduling meetings and sync to your google calendar), in my second year my 
workspace expanded to Native app development and some major projects 
listed in the following section.  

My Projects: 

● CMS  :- 
CMS is abbreviation for Content Management System which is 
manages more than 6000 static pages of the official website of IIT 
Roorkee, the use of a Content Management system is to make a 
template for certain type of page (say news announcement page) so 
that anyone without coding knowledge (say some staff member or 
professor) can make changes to all those pages of that particular type 
by just changing the base template and publish changes. 
 
❖ Feature additions to the Institute CMS ( 10 commits ) 
❖ Role: Backend developer 
❖ CMS handles the official website of IIT-R website 
❖ It manages more than 6000 static pages on the website 
❖ Tech Stack includes Yii 2.0, PostgreSQL, RabbitMq, Apache2 

 
 
 

 

https://github.com/IMGIITRoorkee
https://github.com/kbhardwaj123/IMGSched
https://www.iitr.ac.in/


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 

ㅡ 

Project 
Overview 

 

 
 

● Placement Flutter : 
At the Institute level it is imperative that the information flow is 
smooth and fast, the official placement app aims to provide the 
information regarding the placement and internship programs. 
Additionally the app facilitates direct submission of their resume 
directly to the companies, the app was migrated from native android 
to flutter due to fast development times 
❖ The official Placement app of IIT Roorkee 
❖ Role: Full stack developer (81 commits) 
❖ Currently under development (pre-alpha) 
❖ For Security reasons it implements AES-256 encrypted tokens 

for auth and resume handling 
❖ Shows results for placement and internship seasons 
❖ Facilitates submission of Resumes to companies 
❖ Github Repo link: Placement-flutter 

 
 

● Flutter Login Template: 
An Open Source boilerplate application which is completely packed 
with essentials for flutter development such as Stream Providers, 
Implicit Routing and flutter hooks. 
❖ Open Source Login Template 
❖ Role: Repository creator and maintainer (22 commits) 
❖ Includes Form validation 
❖ Complete implementation of Routing and Data Streams 
❖ Github Repo link: login-boilerplate 

 
 

At its core the Underlying Goal of This Project is to incorporate the concept 
of Gamification into the Commons Android Application with the purpose of 
leveraging User’s interest to increase their Wikimedia edit count. This 
project aims to realise such kind of Gamification by establishing a 
Leaderboards for the users wherein they will be ranked based on their edit 
count via the Commons-App and not the Web portal.  

 

The app already implements the level system which can be combined with 
their ranks (indicative of their edits) and based on that we can award them 
Rank Badges/Titles whose distribution algorithm has been proposed in 
detail in this proposal later. 

 

 

https://github.com/IMGIITRoorkee/placement-flutter
https://github.com/IMGIITRoorkee/flutter-login-boilerplate


 

ㅡ 

Contributions 

 

 

 

● Commons-App, Pull Requests:   
❖ 3422 - For v2.13, handle zoom in media detail view (merged) 
❖ 3344 - TextUtils.isEmpty creates problems when unit testing 

with Mockito (merged) 
❖ 3378 - Ultimate achievement: Too many contributions 

(merged) 
❖ 3407 - Do not display pins at all when "Needs Photo" is 

selected (merged) 
❖ 3351 - Pending GCI task: Add java docs to methods which 

have it missing (merged) 
❖ 3326 - Make category search non case-sensitive (merged) 
❖ 3366 - Adds a Test for Method A categories search (merged) 
❖ 3332 - add javadocs to the file CategoryItem (merged) 
❖ 3512 - Fix App Crashes on opening Contributions from 

MainActivity (merged) 
❖ 3505 - Media Detail design Overhaul (open) 
❖ 3481 - Implement Progress Bar for Zoom Activity (open) 
❖ 3513 - Image height remains zero for some time on bad 

network (open) 

 

● Commons-App, Issues : 
❖ 3343 - TextUtils.isEmpty creates problems when unit testing 

with Mockito (closed) 
❖ 3436 - Switch to Material Card design for the Media Detail 

Fragment (open) 
❖ 3506 - Image View Height remains zero for some time on a 

bad network (open) 
❖ 3507 - App Crashes in MediaDetailsFragment with 

ClassCastException (closed by PR 3512) 
❖ 3414 - Handle zoom in media details view (closed by PR 

3422 ) 
❖ 3355 - Do not display pins at all when "Needs Photo" is 

selected? (closed by PR 3407) 
❖ 3295 - Ultimate achievement: Too many contributions 

(making our script time out) (closed by PR 3378) 
❖ 3278 - Add java docs to methods which have it missing 

(closed by PR 3351) 

  For Contributions After 29th March visit here 
 

 

https://github.com/commons-app/apps-android-commons/pull/3422
https://github.com/commons-app/apps-android-commons/pull/3344
https://github.com/commons-app/apps-android-commons/pull/3378
https://github.com/commons-app/apps-android-commons/pull/3407
https://github.com/commons-app/apps-android-commons/pull/3351
https://github.com/commons-app/apps-android-commons/pull/3326
https://github.com/commons-app/apps-android-commons/pull/3366
https://github.com/commons-app/apps-android-commons/pulls?q=is%3Apr+author%3Akbhardwaj123
https://github.com/commons-app/apps-android-commons/pull/3512
https://github.com/commons-app/apps-android-commons/pull/3505
https://github.com/commons-app/apps-android-commons/pull/3481
https://github.com/commons-app/apps-android-commons/pull/3513
https://github.com/commons-app/apps-android-commons/issues/3343
https://github.com/commons-app/apps-android-commons/issues/3436
https://github.com/commons-app/apps-android-commons/issues/3506
https://github.com/commons-app/apps-android-commons/issues/3507
https://github.com/commons-app/apps-android-commons/pull/3512
https://github.com/commons-app/apps-android-commons/issues/3414
https://github.com/commons-app/apps-android-commons/pull/3422
https://github.com/commons-app/apps-android-commons/issues/3355
https://github.com/commons-app/apps-android-commons/pull/3407
https://github.com/commons-app/apps-android-commons/issues/3295
https://github.com/commons-app/apps-android-commons/pull/3378
https://github.com/commons-app/apps-android-commons/issues/3278
https://github.com/commons-app/apps-android-commons/pull/3351
https://github.com/commons-app/apps-android-commons/pulls?q=is%3Apr+author%3Akbhardwaj123+


 

ㅡ 

Benefits to 
Commons 
App 

 

 

● Leaderboards:  

❖ Would implement Gamification in a much better way as 
compared to the currently implemented User level system.  

❖ Would encourage users to make more edits, compete for 
higher ranks in the leaderboards thereby improving the 
Commons image repository. 

❖ The additions of limited time span leaderboards will prevent 
users with less overall edits from getting discouraged as they 
can still top the weekly or monthly charts. 

 

● Rank Badges/Titles: 
❖ Will serve as an incentive for long term contributions and 

encourage Users to maintain their pace of contributions to 
avoid losing their Rank Title/badge 

❖ This badge could be differentiated from the badge which 
appears on the Achievements page by including the 
leaderboard ranks along with the user level which would 
imply that the user can lose their rank badge/title 

❖ Introducing nearly 10 or 20 ranks will make our Gamification 
more discrete, to be more precise if we have thousands of 
users then there might be users who could get completely 
discouraged if they obtain ranks in order of thousands on the 
other hand those titles/badges which will be based on their 
rank will make it more comprehensible and motivating  

 

ㅡ 

Technical 
Discussion 

 

 

 

Features that can be Implemented: 

● Implement database schema which is entirely separate from the 
existing edit counter as it includes counts made from the web portal. 
The APIs which interact with this particular schema will have their 
End-points served only to the Commons Android app. 

 

● Leaderboards calculated from the above database schema will serve 
their results via a single End-point which would accept the following 
three parameters: 
❖ Uploads/Nearby/Used ( as single integer viz. 0,1,2 ) 

 



 

❖ Weekly/Monthly/All (again as integer parameter) 
❖ UserName 

 

● Entire Calculations will be accomplished on the server side and the 
Android app’s leaderboard section  will have the sole purpose of 
displaying the results. 

 

● The Leaderboards will be cached and stored on the server in a 
database and will be refreshed at regular intervals. 

 

● The leaderboard  database includes only those users who have 
explored the Achievements activity at least once. 

 

● Server will perform complete re-calculation of leaderboard ranks at 
regular interval of 1 hour, additionally for users who are really 
intrigued in the leaderboards and check it more than 5 times a day ( 
on average which will be calculated on a per month basis ) will get 
updated leaderboard after every 5 minutes interval. 

 

● Implement Rank Badges and/or titles to motivate users to maintain 
their pace of contributions so as to get a higher badge , apart from 
that it will prevent users with ranks in orders of thousands to get 
completely unmotivated as badge distribution will be much more 
discrete in order of 10 or 20 badges/titles in total. The inspiration for 
this feature has been from Competitive games like CS:GO, this 
feature is highly effective in leveraging long term user interest. 

 

 

Realisation of mentioned Features: 

● The database schema will provide an end-point to the app which 
consequently ensures that only the android app users enter the 
leaderboard database. The Schema can be implemented as 
mentioned in the model structure diagram sketched below: 

 

   

 

 

   

 



 

 Model Structure Diagram: 

 

The Actor table in the Database refers to the user table in the database 
named wikidatawiki as mentioned in  wikidataedits.py 

 

 

● The results will be served using a single API End-point as discussed 
previously, the server side request flow will implement the following 
pattern: 

 

 

https://github.com/commons-app/commonsmisc/blob/master/wikidataedits.py


 

Request Flow Diagram: 

 

● How can this division of requests improve performance ? 

The users who are check leaderboards quite often will be marked as 
Active users, as a matter of fact only a fraction of the total user base 
will be highly active so even if they are provided with the feature of 
more frequently updated Leaderboards the server would not have 
any extra load or request traffic 

The Non-Active users would be provided with the leaderboards 
which are refreshed once in an hour. 

 

● How can Rank Calculation architecture be implemented ? 

The API hosting server can run certain services for periodic rank 
re-calculation, these services can be implemented using the 
Advanced Python Scheduler ( APScheduler  ) or we can also use 
Cron Jobs( description ). 

❖ Uploads Leaderboards: 

 

https://apscheduler.readthedocs.io/en/stable/
https://medium.com/@gavinwiener/how-to-schedule-a-python-script-cron-job-dea6cbf69f4e


 

The commons applications provides public logs of the users 
which when displayed with conditions type=upload and with 
tag filter=android app edit we only get the uploads made 
by the android app as can be seen here . 

The API would implement this as follows: 

 

Use commonswiki_p; 
Select count(*) as edits 
From logging 
Join change_tag on log_id = ct_log_id and 
ct_tag_id=22 
# Tag id 22 is for Android App edits 
Where log_type='upload' and log_actor = ACTOR_ID; 

 

❖ Nearby Leaderboards: 

These are counted when images are uploaded while in 
Nearby section so they are automatically from the mobile 
app. 

❖ Images Used in articles Leaderboards: 

These are calculated from the globalimageslinked table under 
the GlobalUsage extension, to sum it up: 

 

Use commonswiki_p; 
Select count(distinct gil_to) from 
globalimageslinked 

Where gil_to in (Select log_title from logging 
Where log_type='upload' log_actor=ACTOR_ID); 

 

 

● How can Badge Distribution be implemented: 

For badge distribution we combine user’s  rank ( monthly/weekly 
rank, could be based on uploads ) with their achievements so as to 
incorporate long term (the level) and short term (weekly/monthly 
rank) so we define a quantity x whose formula has been described 
below and we find its standard deviation and the badges are 
distributed as per the Badge distribution diagram . 

 

https://commons.wikimedia.org/wiki/Special:Log?type=&user=Kbhardwaj13&page=&wpdate=&tagfilter=android+app+edit


 

Badge calculation Algorithm : 

 

Badge distribution diagram : 

The badges can be distributed with a gap of 20 (tentative) in the 
Standard deviation. 

 

● All Leaderboards will implement lazy loading, technically this can be 
realised by implement pagination in RecyclerView using RxJava 
operators 

 

 



 

ㅡ 

UI - UX 
Research 

  

 

 

 



 

 

 

The Design Screens shown above demonstrate the flow of the app in the 

leaderboards section, the last screen shows the user screen when the user 

has clicked on one of the leaderboard position holders, this first opens the 

commons gallery page of that particular user from where users can open 

any of the uploaded images (this is exactly what has been shown in the last 

screen, one of the gallery pictures ) 

 

 

 

 

 



 

ㅡ 

CRUD 
Operations 

  

 

An Overview of how the crud operations will work has been drawn below 

For Evaluating uploads of Single user: 

 

 

The Leaderboards will be processed in two layers as shown above: 

● Layer 1: 

The uploads will be derived from joined logging and change_tag 
tables now we will also have the timestamp in the combined result 
records, in all the cases (Nearby/Uploads/Used). These results are 
calculated on the basis of the logic discussed under the heading 
Rank Calculation. 

 

● Layer 2: 

In all the three cases (Nearby/Uploads/Used) the final record list will 
have timestamp (log_timestamp) now this timestamp will be used to 
filter the leaderboard results as follows: 

 

❖ Weekly: If Current TimeStamp - Log TimeStamp < 
WeekDuration 

Where WeekDuration is the difference between two 
timestamps with one week gap. 

 



 

❖ Monthly: If Current TimeStamp - Log TimeStamp < 
MonthDuration 

Where MonthDuration is the difference between two 
timestamps with one month gap. 

❖ All Time: No additional calculation required. 

 

● Layer 3: Sort the results as per the upload numbers and then store 
the rank into the particular case (for instance uploads/all) into the 
field rank_uploads_all in the record of the corresponding user, inside 
the table edits_commons_app. 

The first two Layers will be repeated for every user and for all the (3*3) 9 
cases we will store the corresponding fields of the edits_commons_app 
table. 

After the completion of all the three layers we will have a complete 
leaderboard record of a particular user, this will be repeated for every user. 

The Rank Badge calculation kicks in at this point, from the algorithm it 
might seem like the process would be highly taxing for the server but 
actually it's quite straight-forward. The 9 final ranks per record in the 
edits_commons_app table leveraged into the standard deviation formula 
mentioned in the Badge Calculation section. 

 

 



 

ㅡ 

Project 
Timeline 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Community Bonding 

4th May - 1st June  ● Get to know the Community more, 
and bond with mentors, admins 
and developers. 

● Get feedback if something in the 
project needs amendment. 

● Finalize the Database Schema and 
APIs. 

● Read more about RxJava, 
APScheduler and other relevant 
android technologies and 
concepts. 

● Get familiar with Commons 
database schema and ideate on 
how it will implement the new 
tables proposed in the project 

● Finalise a barebones 
implementation of the ui using 
viewpage and recyclerView in the 
Achievements activity 

● Deliverables: 
○ Report on Community 

Bonding period 

Phase - 1 

Week 1 
1st June - 7th June 

● Start UI implementation of primary 
filters (nearby/used/uploads)with 
mock data 

● Implement basic view pager 
● Get approval on database schema 

changes and gather necessary 
knowledge on how to implement it. 

Week 2 
8th June - 14th June 

● Implement Capsule navigation bar 
(primary filters)in leaderboards 
view page. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

● Get approval on MySql and 
MariaDb script code changes 
(script 1 and script 2) 

● Create Pull Request  for script 
changes, iterate upon received 
reviews 

Week 3 
15th June - 21st June 

● Commence coding the python API 
algorithms for Layer 1 
filters(nearby/used/uploads)and 
storing rank in the database. 

● Discuss API code structures with 
mentors. 

● Create Pull Request on 
commonsmisc repo with the Layer 
1 implementation, iterate upon 
received reviews. 

Week 4 
22nd June - 28th June 

● Start Code implementation of 
APScheduler services (responsible 
for periodic updation of 
leaderboards). 

● Discuss Services code related 
issues with the mentors. 

● Create Pull Request for services on 
commonsmisc and iterate upon 
received reviews. 

Phase - 2 

Week 5 
29th June - 5th July 

● Debug the database and Layer 1 
API changes, ensure that they are 
working in synchronization. 

● Ensure only those who visit 
achievements enter the database. 

● Commence recycler view 
implementation of leaderboards 

● Get Approval on the final 
Leaderboards design along with 
code logic(upto this juncture). 

Week 6 
6th July - 12th July 

● Implement RxJava Observable 
pattern for the received user list. 

 

https://phabricator.wikimedia.org/source/mediawiki/browse/master/maintenance/postgres/tables.sql
https://phabricator.wikimedia.org/source/mediawiki/browse/master/maintenance/tables.sql


 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

● Discuss the final Observable 
pattern code implementation of 
leaderboards. 

● Create a Pull Request for the work 
done on a different(from master) 
branch, amend as per the inputs 
received. 

Week 7 
13th July - 19th July 

● Debug the database-API(Layer 
1)-Userlist chain. 

● Start implementation of Layer 2 for 
API to implement time filters. 

Week 8 
20th July - 26th July 

● Complete Layer 2 implementation 
along with the Rank Badge/Title 
calculation. 

● Synchronise services with the 
updated APIs(Layer 1 + 2). 

● Create Pull Request(not master), 
iterate on inputs. 

Phase - 3 

Week 9 
27th July - 2nd August 

● Commence functional 
implementation of the time filters 
in the App. 

● Debug combined implementation 
of all filter combinations in the 
application 

Week 10 
3rd August-9thAugust 

● Finalise code structure the 
commence implementation of 
pagination to facilitate lazy loading. 

● Iterate upon the reviews received 
on the code changes so far and get 
it merged with master.  

Week 11 
10th August - 16th 
August 

● Finalise how avatars would be 
stored(possibly local storage or 
cache). 

● Implement avatar display along 
with Rank Badge display in the UI. 

 



 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

ㅡ 

Activity 
Deliverables 

 

 
ㅡ 

Motivation 

 
 
 
 
 
 
 
 
 
 

ㅡ 

Post GSoC 
 

 
 
 
 

● Get reviews on the final ui code, 
amend as per the suggestions 
before merging to master 

Week 12 
17th August - 23rd 
August 

● Fix the bugs. 
● Document as necessary and write 

unit tests. 
● Implement the Avatar change 

feature.(if time permits) 

Final Evaluation 
31st August - 7th 
September 

● Complete Implement the Avatar 
change feature. 

 
 

● Write blog posts on medium every alternate week. 
● Write weekly report of accomplished tasks on the mailing list (or 

something more relevant) 
● Prepare and submit a presentation for this project. 

 
 
 

 
 
Google Summer of Code is an excellent platform to get acquainted with the                         
open source community and their skillful mentors. It gives one a professional                       
work experience in their college years where they collaboratively build a                     
product for the welfare of the society. In this process, both the individual and                           
the community progress and flourish. 
 
Contributing to Commons has been an enriching experience, the mentors and                     
the community have been really friendly and helpful in giving me constructive                       
criticism making me learn new stuff and improving my coding skills. 

 
 
 

 
 
A couple of months have passed since I have been contributing to 
commons-app and must say that I have happened to develop a keen fondness 
towards the open source scenario. After the final evaluation I still wish to be a 
part of the commons app and continue to contribute to its cause of visually 
document this fine old world. In the long term if the community ever happens 
to wonder about creating the app on a  non-native platform (flutter or 
react-native) I would be more than excited to hop on board. 

 



 

 

ㅡ 

Availability 

 
 
 

ㅡ 

Resources 

 
 
 
 
 
 

ㅡ 

Design 
Links 

 
 

 
 

 
During the GSoC period I do not have any other summer internships  or any 
other sort of occupancy so I would be available throughout the gsoc period at 
the times mentioned in the working  hours section. 
 
 
 

 
 

● GSoc task page 
● Github issue for GSoC 
● WikiMedia Database Schema 
● Quarry-beta 
● APScheduler 

 
 
 

 
 

● Model Structure Diagram: 
Link 
 

● Request Flow Diagram: 
Link 
 

● Badge Distribution Diagram: 
Link 
 

● UI - UX: 
Link 
 

● Layer Diagram: 
Link 

 
 
 

 

https://phabricator.wikimedia.org/T244197
https://github.com/commons-app/apps-android-commons/issues/3363
https://www.mediawiki.org/w/index.php?title=Manual:Database_layout/diagram&action=render
https://quarry.wmflabs.org/
https://apscheduler.readthedocs.io/en/stable/
https://www.figma.com/file/P6jaCwn47ygi5Oa9aaFz1O/Schema?node-id=1%3A8
https://www.figma.com/file/8842nJl573AlJ3GIBBikzt/Flow-Chart?node-id=0%3A1
https://www.figma.com/file/A9zbcv6uNtu9zS1atcs9ZZ/rank-div
https://www.figma.com/file/dN8a4zcclXNJKaflOzfoRj/UIX
https://www.figma.com/file/NDHL4a2AmxRSWmnS7qUlWh/Layers

